Scene object tailor-made for accepting text input.
This sprite acts as a classic input field: user can input text using keyboard and cursor keys.
It supports different field and buffer lengths, skinning input (i.e. password field) as well as user-defined
set of keys for submission and cancellation. You can also chain multiple text inputs together to create an
auto-navigable forms. NOTE: this sprite works only with system font - you can't use FIGLeft fonts with this sprite.
CosPlay provides number of built-in sprites. A sprite is a scene objects, visible or off-screen,
that is custom designed for a particular use case. Built-in sprites provide concrete
implementations for the abstract methods in the base CPSceneObject class. Most non-trivial games
will use combination of the built-in sprites and their own ones. Here's the list of the built-in
sprites:
Optional set of keyboard keys to accept for cancellation action. When one of these keys
is pressed the sprite will reset to its initial state. Default value is CPKeyboardKey.KEY_ESC.
id
Optional ID of this sprite.
initTxt
Optional initial text to show at the initial state. Default value is an empty string.
maxBuf
Overall buffer length of this field. It should always be greater then or equal to visible length.
next
Optional scene object ID to switch keyboard focus to after the user pressed one of the
submit keys. Default value is None.
offSkin
The skinning function to the inactive state (when sprite does not have keyboard focus).
onSkin
The skinning function to the active state (when sprite has keyboard focus).
submitKeys
Optional set of keyboard keys to accept for submission action. When one of these keys
is pressed the sprite will make result available via isReady method and will optionally switch
keyboard focus for the next scene object, if any. Default value is CPKeyboardKey.KEY_ENTER.
tags
Optional set of organizational or grouping tags. By default, the empty set is used.
visLen
Visible length of this field.
x
X-coordinate of the top-left corner.
y
Y-coordinate of the top-left corner.
z
Z-index at which to render this sprite.
Example:
See CPTextInputExample class for the example of
using labels and text input.
Gets current X-coordinate of this object within dimensions of its scene. Note that returned value
is allowed to be outside scene's dimension (e.g. negative value). In such cases, the clipping of the
scene rendering will result in showing only portion or none of the object.
Gets current X-coordinate of this object within dimensions of its scene. Note that returned value
is allowed to be outside scene's dimension (e.g. negative value). In such cases, the clipping of the
scene rendering will result in showing only portion or none of the object.
Gets current Y-coordinate of this object within dimensions of its scene. Note that returned value
is allowed to be outside scene's dimension (e.g. negative value). In such cases, the clipping of the
scene rendering will result in showing only portion or none of the object.
Gets current Y-coordinate of this object within dimensions of its scene. Note that returned value
is allowed to be outside scene's dimension (e.g. negative value). In such cases, the clipping of the
scene rendering will result in showing only portion or none of the object.
Gets Z-index or order to use in rendering of this object. A pixel with higher Z-index visually
overrides the overlapping pixel in the same XY-coordinate with equal or smaller Z-index.
Gets Z-index or order to use in rendering of this object. A pixel with higher Z-index visually
overrides the overlapping pixel in the same XY-coordinate with equal or smaller Z-index.
Called to render this scene object. Only visible and in camera frame objects will receive this
callback. This callback is called on scene object
after all scene objects received update callback. Note that unlike update callbacks
and shaders that are called for all scene objects on each frame, this callback is only called for scene
objects that are visible and, at least partially, in camera frame.
Called to render this scene object. Only visible and in camera frame objects will receive this
callback. This callback is called on scene object
after all scene objects received update callback. Note that unlike update callbacks
and shaders that are called for all scene objects on each frame, this callback is only called for scene
objects that are visible and, at least partially, in camera frame.
Called to update the internal state of this scene object. This callback is called each frame on every
object in the scene and it is called before any render callback. Note that all scene object will
receive this callback before first render callback.
Called to update the internal state of this scene object. This callback is called each frame on every
object in the scene and it is called before any render callback. Note that all scene object will
receive this callback before first render callback.
It is reflexive: for any instance x of type Any, x.equals(x) should return true.
It is symmetric: for any instances x and y of type Any, x.equals(y) should return true if and
only if y.equals(x) returns true.
It is transitive: for any instances x, y, and z of type Any if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) should return true.
If you override this method, you should verify that your implementation remains an equivalence relation.
Additionally, when overriding this method it is usually necessary to override hashCode to ensure that
objects which are "equal" (o1.equals(o2) returns true) hash to the same scala.Int.
(o1.hashCode.equals(o2.hashCode)).
Attributes
that
the object to compare against this object for equality.
Returns:
true if the receiver object is equivalent to the argument; false otherwise.
Gets the optional list of shaders attached to this scene object. By default, returns
an empty list. Note that shaders are called regardless of whether the object visible, in camera
frame or invisible.
Gets the optional list of shaders attached to this scene object. By default, returns
an empty list. Note that shaders are called regardless of whether the object visible, in camera
frame or invisible.
If object is invisible than only update method will be called
on each frame. If object is visible and in camera frame - method render will be called
as well to render itself. Note that shaders are called regardless of whether the object visible, in camera
frame or invisible.